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Abstract. Robust pattern recognition within the Bayesian framework for
scene segmentation/boundary detection is often hampered by the pres-
ence of textures within natural images. To improve segmentation/
boundary detection on natural images, it is necessary to combine mul-
tiple features effectively. Two algorithms for combining both color and
texture features to assist boundary detection processes are introduced.
One combines features through the surface processes and the other
through the line processes. The algorithms can be generalized for com-
bining any number of feature sets. © 1998 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(98)00903-9]

Subject terms: boundary detection; Bayesian model; texture; features; minimiza-
tion.
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1 Introduction

In this paper, color features are defined as features obta
by pixelwise operations such as scaling and mean sub
tion on the original data, while texture features are defin
as features obtained by combination of pixelwise ope
tions and local operations such as averaging and linea
ters. The color segmentation implies the segmentation
ing only color features, while the texture segmentat
implies segmentation using only texture features.

Many existing segmentation/boundary detection al
rithms deal only with either textured images or nontextu
images.1–3 When texture segmentation algorithms are a
plied to nontextured images, they often fail to detect
location of boundaries accurately, whereas when the c
segmentation algorithms are applied to such images,
can easily obtain accurate boundaries. On the other h
when the color segmentation algorithms are applied to
tured images, they produce spurious boundaries within
tured regions and often fail to delineate the region bou
aries clearly. Thus, they are not sufficient for natu
images, which contains both textured regions and non
tured regions with clear boundaries.

Modeling the image formation process through a d
cretized system of partial differential equations~PDEs! is
one way to address the segmentation/boundary detec
problems.4,5 A model that has gained much attention r
cently is called the weak membrane model~WMM ! and
consists of two Markov random fields: one models hom
geneous surfaces and is called the surface process an
other specifies discontinuities explicitly and is called t
line process.6–8 With this method, the objective become
finding the global minimum of the energy function d
scribed as

E5E ais2gi21mi¹si2~12 l !21n l 2 dx dy, ~1!
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whereg(x,y) is the extracted local features, called the o
servation;s(x,y) is the surface process and represent
smooth surface that is constrained by the observat
l (x,y) is the line process, which takes either 0 or 1;¹ is the
gradient operator, andi•i is the norm in the feature vecto
space. The Euclidean norm is used in all of our expe
ments. The second term is called the stabilizer and the t
term is the penalty. Throughout the rest of the paper,
integral over the spatial domain is omitted for energy re
resentation, implying that the total energy is the sum
local energy, which can be determined locally by two Ma
kov random fields.

Through minimization of the energy function, the su
face process maintains closeness to the observation,
develops into a smooth surface within a boundary wherl
50. The surface process is allowed to be discontinuou
boundaries wherel 51. The penalty term penalize havin
l 51 so that it preventsl from being 1 everywhere. Asn
increases, the number of boundary pixels in the result
creases.

The energy landscape of Eq.~1! is not convex, therefore
we must use a global optimization technique such as si
lated annealing and Hopfield network to obtain a ne
optimal solution.3,6,9

The left image in Fig. 1 shows a synthetic image w
both textured and nontextured regions. When the bound
detection process using the WMM with a color feature
applied to this image, the middle image in Fig. 1 is o
tained as the result. The process detected the sharp bo
ary between the two nontextured regions and also
boundary between the top-textured region~grass texture!
and the nontextured region. However, it failed to compl
the boundaries between textured regions and between
bottom two regions. It also produced many spurious bou
aries within the textured regions.

Now the same membrane model is applied to a text
feature set using Law’s texture filters~see Sec. 5 for de-
829© 1998 Society of Photo-Optical Instrumentation Engineers



Kubota and Huntsberger: Adaptive pattern recognition system . . .
Fig. 1 Synthetic test image and results of conventional boundary detection algorithms: left, the original
synthetic image; middle, a typical result of minimizing the WMM with color feature (a50.1, m51.0, and
n050.03); and right, a typical result with texture features (a50.1, m51.0, and n050.4).
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tails!. The result is the right image in Fig. 1. Note that a
boundaries are detected fairly well. However, spurio
double boundaries are produced between two nontext
regions, and the boundaries are relatively thicker than
result of the color feature WMM. Thus, the accuracy of t
boundary location is not precise.

To achieve robust segmentation/boundary detection
natural images, it is necessary to combine multiple featu
effectively. This paper proposes algorithms that use b
texture and color features and complement the deficien
observed in the preceding examples. Here, we call the
cess of combining two sets of features blending. With
WMM, the blending can be done through the region p
cessess or through the line processesl .

Another important issue related to many segmentat
boundary detection methods is parameter estimation.
have developed a heuristic parameter adaptation schem
enhance the performance of the Bayesian based boun
detection algorithm.10 This adaptation technique was mod
fied and applied in conjunction with the blending metho

Section 2 describes the algorithm for blending throu
surface processes. Section 3 describes the algorithm
blending through line processes. Section 4 describes a
rameter adaptation method to enhance the boundary d
tion technique. Section 5 provides some experimental
sults, and Sec. 6 provides a summary and conclusions

2 Blending through Region Processes

First, the algorithm is described in a general case whereM
sets of features must be blended for boundary detec
Then it is described in detail for color and texture featu
blending.

The main idea is to combine multiple features by n
malized weights and to minimize the energy function w
respect to the weights to obtain near-optimal weights. T
weights are denotedl i and satisfy the following con-
straints:

(
i

l i51, l i>0. ~2!

Then the weighted features and surface processes are
830 Optical Engineering, Vol. 37 No. 3, March 1998
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ḡi5l igi , ~3!

s̄i5l isi . ~4!

The total energy of the model is

E5(
i

a i i s̄i2ḡi i21mi¹ s̄i i2~12 l !21n l 2. ~5!

If we assume

dl i

dx
~12 l !25

dl i

dy
~12 l !250, ~6!

then

E5(
i

@l i
2a i isi2gi i21l i

2mi¹si i2~12 l !2#1n l 2. ~7!

To ensure the assumption of Eq.~6! to be valid, an addi-
tional termmi¹l i i2(12 l )2 is added to the energy func
tion. Thus, our final energy function for the feature blen
ing is

E5(
i

@l i
2a i isi2gi i21l i

2mi¹si i2~12 l !2

1mi¹l i i2~12 l !2#1n l 2. ~8!

Initially, l i are all set to 1/M . Minimization of Eq.~5! is
performed not only by updatingsi and l but also by updat-
ing l i . Solving the Euler-Lagrange equation gives the u
date rule forsi as

dsi

dt
52a i isi2gi i1¹@m~12 l !2¹si #. ~9!

The update rule forl using the Hopfield network is9,11

dl m

dt
5m(

i
i¹si i2~12 l !2n l 2A~ t !l m , ~10!
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l 5
1

11exp ~2 l m /T!
, ~11!

where

lim
t→`

A50 lim
t→`

T50, ~12!

and l m is the internal state variable for an analog neuron
the Hopfield network.9 The time variableT and A corre-
spond to the temperature and the gain control for the an
neuron, respectively.9 They start from relatively large val
ues so that the energy landscape is convex with respe
l m . As they decrease, the energy approaches Eq.~5!, and
the line process becomes either 1 or 0. A typical schedu
for T andA is

T~n!5hT~n21!, A~n!5hA~n21!, 0,h,1, ~13!

wheren is the time index, which is incremented by 1 whe
the system reaches a stable point.

To satisfy the hard constraints onl i in Eq. ~2!, we as-
sume that increasingl i by d implies that decreasing othe
M21 l’s by d/(M21). Then the update rule forl i is

dl i

dt
52l ia i isi2gi i2l imi¹si i2~12 l !2

1
l i

M21 (
j Þ i

@a j isj2gj i1mi¹sj i2~12 l !2#

1mi¹l i i2~12 l !2. ~14!

Now consider for blending of color and texture feature
In this case,M52. Throughout the paper, processes a
parameters related to the color features are denoted
subscriptc and those related to the texture features
denoted by a subscriptt. Thus,sc denotes the color surfac
processes andst denotes the texture surface processes.

Now the energy function of Eq.~8! becomes

E5l2acisc2gci21l2mi¹sci2~12 l !21~12l!2a tist

2gti21~12l!2mi¹sti2~12t !21mi¹li2~12 l !2

1n l 2. ~15!

This yields the update rule forl as

dl

dt
52l~acisc2gci2a tist2gti !2lm~ i¹sci22i¹sti2!

1¹@m~12 l !2¹l#, ~16!

or

dl

dt
52Ec~sc!1Et~st!1¹@m~12 l !2¹l#, ~17!

whereEc andEt are the sums of the first two terms of th
membrane energy@Eq. ~1!# for the color and the texture
o

a

features, respectively. Thus,l adapts itself such that i
weighs features with less energy@in terms of the membrane
equation, Eq.~1!# more than the other.

Equation~16! does not guarantee thatl remains in the
constrained range@0,1# andl must be forced to stay within
the range if it tends to go out of the range. By scaling tw
sets of features in similar ranges,l tends to stay within the
range. In our experiment, each feature image is normali
to zero mean and variance 1 prior to the blending proce

3 Blending through Line Processes

With this method, each feature set has its own line proc
however, the line processes are constrained to be iden
by the term (l i2 l j )

2 in the energy equation. The energy
be minimized is

E5(
i

Fa i isi2gi i21m i i¹si i2~12 l i !
21n i l

2

1
j

2 (
j

~ l i2 l j !
2G . ~18!

The update rule for the surface process is

dsi

dt
52a i isi2gi i21¹@m i~12 l i !

2¹si #, ~19!

and the update rule for the line process is

dl mi

dt
5m i i¹si i2~12 l i !2n i l i2B~ t !j(

j
~ l i2 l j !

2A~ t !l mi , ~20!

l 5
1

11exp ~2 l mi /T!
, ~21!

where

lim
t→`

A50 lim
t→`

B51.0 lim
t→`

T50. ~22!

The time variableA is the gain control of the Hopfield
analog neuron andT is the temperature, as described in t
previous section. The variableB begins with a large value
and decreases by a rate similar to that of the annea
temperatureT decrease. A typical scheduling forB is

B~n!5hB~n21!11, 0,h,1, ~23!

so that it does not fall below 1. It is used to enhance
contribution of the constraintl i5 l j at early stages of the
minimization process when the difference of two line pr
cesses are very small@see Eq.~21!#. Without this enhance-
ment, the last term in Eq.~6! is negligible at smallT, and it
does not contribute to the line process update until the
process establishes its state significantly. At this point, i
not easy to change the state of the line process from th
state to the off state or vice versa.

For the case with color and texture features, the ene
function becomes
831Optical Engineering, Vol. 37 No. 3, March 1998
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E5acisc2gci21a tist2gti21mci¹sci2~12 l c!
2

1m ti¹sti2~12 l t!
21ncl

21n tl
21j~ l c2 l t!

2. ~24!

The update rule for the color line process is

dl mc

dt
5mci¹sci2~12 l c!2ncl c2B~ t !j(

j
~ l c2 l t!

2A~ t !l mc , ~25!

followed by Eq. ~21!. The subscriptsc and t must be
swapped for the texture line process update rule.

4 Parameter Adaptation

The conventional WMM, which assumes the same ene
function throughout the image often produces unsatis
tory results especially when high-contrast regions and lo
contrast regions coexist within an image. In order to c
cumvent this problem, the parametern can be adjusted
locally based on the local feature statistics. This sect
briefly describes an effective parameter adaptation te
nique ~for more detail, see Ref. 10!.

By employing the mean field approximation on th
WMM, the line process can be controlled by12

l 5
1

11exp ~n2mu¹ f u2/T!
. ~26!

It is easy to see in Eq.~26! that (n/m)1/2 acts as a threshold
for the line process. When the feature gradient is lar
than (n/m)1/2 the line process at the location develops in
the on state, otherwise develops into the off state.

Our objective through adaptation of the parametern is to
extract salient boundaries/edges regardless of their illu
nation intensities. Initially,n is estimated by

n5n0G ~x,y!2, ~27!

where

G 5u¹ f u* G, ~28!

and G is a concentric Gaussian filter. Note thatG is
squared so thatn matches withu¹ f u2 in Eq. ~26!. With this
method,n adapts locally by the local feature gradient de
sity and the global constant parametern0 .

Like the surface process,n(x,y) is also forced to be
smooth within a boundary, and discontinuities are allow
only at the boundary. To ensure this constraint, the sa
nonlinear diffusion operation that is a part of the surfa
process update in Eq.~9! is applied at the same rate wit
the surface process. Thus,

dn

dt
}¹@m~12 l !¹n#. ~29!

This nonlinear diffusion operation onn reduces noises in
the final line process result.
832 Optical Engineering, Vol. 37 No. 3, March 1998
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5 Experimental Results

5.1 Feature Extraction

For our experiment, Law’s texture filters are used as a p
of the texture feature extraction process. There are five
filters producing possible 25 features~5 different filters in
horizontal and vertical directions yields 25 different com
bination of filters! at every pixel location. Law’s filters are

h15$1 4 6 4 1%,

h25$21 22 0 2 1%,

h35$21 0 2 0 21%,

h45$21 2 0 22 1%, and

h55$1 24 6 24 1%. ~30!

The next operation after Law’s filter operation is a pi
elwise nonlinear transformation using hyperbolic tange
For each pixel in the filter output images, pixel values
modified by

y5tanh~bx!, ~31!

whereb is a constant that is set to 1.0 throughout the e
periments,x is the pretransformation value, andy is the
new value. This nonlinear transform enhances the cont
of the features.

Following the nonlinear transform is the local avera
operation. The average absolute deviation described in
1 is used. A concentric Gaussian is used as a window fu
tion for the averaging. The output of the average operat
is

z5G* J, ~32!

where

J~x;y;I !5uI ~x,y!u, ~33!

I (x,y) is the input image, andG is the concentric Gaussian
The size and the standard deviation of the Gaussian w
dow must be adjusted to match the sizes of texels in e
image. Figure 2 shows the overall texture feature extrac
process.

Normalized pixel values are used as color features.
each input image, pixel values are shifted and scaled so
the mean of the pixel values are 0 and the variance is

5.2 Results

Note that throughout the experiments, the color parame
(ac ,mc ,n0c) and the texture counterparts (a t ,m t ,n0t) are
set to be equal for the blending through surface method
that we introduce a minimum amount of parameter adju
ment. On the other hand, we allowed two sets to be diff
ent for the blending through line processes.

Figures 3 and 4 show the results of two algorithms a
plied to synthetic images. The left images are the origi
images, the center images are the results of the blen
through surface processes, and the right images are th
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Kubota and Huntsberger: Adaptive pattern recognition system . . .
sults of the blending through line processes. The value
the parameters are given in the caption of each figure.
left image in Fig. 3 is the same test image shown in Fig

For Fig. 3, the blending through surface processes
tected most of the boundaries accurately with few spuri
boundaries inside the textured regions. The blend
through line processes detected most of the boundaries
they are thicker and less accurate than the blending thro
surface process. The results of the blending through sur
processes shows the most complete, most accurate,
least noisy result among those shown in Fig. 1 and 3.

For Fig. 4, the blending through surface processes
tected much more complete boundaries than the blen
through line processes while picking up less boundarie

Figures 5 and 6 show the results of boundary detec
applied to natural images. The top-left images are the or
nal images, the top-right images are the results using o

Fig. 2 Texture feature extraction process.
f
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the color feature, the bottom-left images are the results
the blending through surface processes, and the bott
right images are the results of the blending through l
processes. The values of the parameters are given in
caption of each figure. Figure 5 consists of two sofas
plain one~the one closer to the viewer! and a colorful one.
Figure 6 consists of two moving cars, a textured surfa
and a nontextured but noisy surface.

For Fig. 5, the result with only the color feature cou
not distinguish the true region boundaries from the text
edges within the colorful sofa pattern. The blendi
through surface processes detected the boundaries o
plain sofa, although the boundary for the colorful sofa
noisy. The blending through line processes did not de
the sofa boundaries as well as the blending through sur
processes, however, it has much less spurious bound
than the result with only the color feature~top right!.

For Fig. 6, all results look similar, but the bottom tw
~results through the blending! are less noisy and have bett
boundary representation.

Figure 7 shows the final parameter images forn and l
when the blending through surface processes is applie
the sofa image~Fig. 5!. Note that the parameters ar
smooth within the region boundaries,l is small within
heavily textured regions whilen is large in the region.

6 Conclusion

This paper introduced two algorithms for boundary det
tion using multiple feature sets, mainly color and textu
features. It also described a heuristic parameter adapta
scheme to enhance the performance of the algorithms.

In all the experiments, the blending through surface p
cesses outperformed the blending through line proce
and no blending~only using the color features!. It was
rather surprising that without any prior information, the a
gorithm tended to distinguish textured regions and nont
tured regions, as can be seen in Fig. 7, through minim
tion of the energy Eq.~15!.

The amount of parameter adjustment was very small
the blending through surface processes. This was ano
advantage over the blending through line process
Fig. 3 Feature blending results I. The result of boundary detection on a synthetic image with textured
regions and nontextured regions: left, the original gray-scale image; middle, the result of the blending
through surface processes using both gray-scale pixel values and texture features (a50.5, m51.0,
and n050.02); and right, the result of the blending through line processes (ac5a t50.1, mc5m t

51.0, n0c50.03, n0t50.5, and l54).
833Optical Engineering, Vol. 37 No. 3, March 1998
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Fig. 4 Feature blending results II. The result of boundary detection on a synthetic image with textured
regions and nontextured regions: left, the original gray-scale image; middle, the result of the blending
through surface processes using both gray-scale pixel values and texture features (a50.3, m51.0,
and n050.03); and right, the result of the blending through line processes (ac5a t50.1, mc5m t

51.0, n0c50.01, n0t50.5, and l54).
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Throughout the experiments, only two parameters were
volved for adjustment~a andn0!.

To show the effectiveness of the feature blendin
WMM was applied on the synthetic images~Figs. 1 and 4!
using the color features and the texture features indep
dently, thus generating two separate boundary results
each synthetic image. Given two boundary images, the
timal but artificial blending is performed by the following
the location is a part of a boundary if both results agree t

Fig. 5 Feature blending results III. The result of boundary detection
on a room with sofa image: top left, the original gray-scale image;
top right, the result of boundary detection using only gray-scale pixel
values (a50.3, m51.0, and n050.03); bottom left, the result of the
blending through surface processes using both gray-scale pixel val-
ues and texture features (a50.3, m51.0, and n050.02); and bot-
tom right, the result of the blending through line processes (ac5a t

50.5, mc51.0, m t52.0, n0c5n0t50.1, and l58).
834 Optical Engineering, Vol. 37 No. 3, March 1998
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t

it is on a boundary or if one of the results shows that it is
a boundary and the location is indeed on a true bounda

The artificially ~in a sense that the process requires t
knowledge of the true boundaries! generated boundary re
sults for two synthetic images are shown in Fig. 8. The
results are more accurate than the others shown previou
However, the results of the blending through surface p
cesses~the middle images of Figs. 3 and 4! are very com-
parable to the optimal results, thus the blending meth
produced near optimal results on these synthetic image

Fig. 6 Feature blending results IV. The result of boundary detection
on a natural scene image: top left, the original gray-scale image; top
right, the result of boundary detection using only gray-scale pixel
values (a50.3, m51.0, and n050.03); bottom left, the result of the
blending through surface processes using both gray-scale pixel val-
ues and texture features (a50.3, m51.0, and n050.03); and bot-
tom right, the result of the blending through line processes (ac5a t

50.4, mc51.0, m t54.0, n0c5n0t50.1, and l516).
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Due to the complexity of the systems@Eqs.~8! and~6!#,
it is difficult to analytically compare the performance of th
two methods. In our opinion, the superior performance
the blending through surface process is attributed to the
that for the blending through surface processes, the c
pling is done through the parameterl, which covers the
whole 2-D area, while for the blending through line pro
cesses, the coupling is done through the line proces
which covers only a subset of the 2-D image area. Thus,
former has a better control of coupling over the whole im
age area. The time variableB in Eq. ~20! was introduced to
complement this insufficiency, and it could be possible
improve the performance by using a different scheduli
from Eq. ~23!.

The success of treatingl as another surface process an
letting it participate in the minimization process has d
rected our attention to the idea of treating all the paramet
similarly. Thus, the parameters adapt themselves as the

Fig. 7 Final diffused parameter image: top left, the final parameter l
image plane; top right, the final parameter n0 image plane; and bot-
tom, the final color feature image plane. Note the parameters are
smooth within a region.

Fig. 8 Artificially generated optimal blending results: left, the result
for the synthetic image in Fig. 1; right, the result for the synthetic
image in Fig. 4. For more detail, see the text.
t
-

,

-

sult of the energy minimization process by the paramet
New energy constraints must be devised and tested. Th
our future direction for more robust scene segmentati
boundary detection mechanism.
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